Inverted substrate preferences for photochemical heterolysis arise from conical intersection control.
نویسندگان
چکیده
Heterolytic bond scission is a staple of chemical reactions. While qualitative and quantitative models exist for understanding the thermal heterolysis of carbon-leaving group (C-LG) bonds, no general models connect structure to reactivity for heterolysis in the excited state. CASSCF conical intersection searches were performed to investigate representative systems that undergo photoheterolysis to generate carbocations. Certain classes of unstabilized cations are found to have structurally nearby, low-energy conical intersections, whereas stabilized cations are found to have high-energy, unfavorable conical intersections. The former systems are often favored from photochemical heterolysis, whereas the latter are favored from thermal heterolysis. These results suggest that the frequent inversion of the substrate preferences for nonadiabatic photoheterolysis reactions arises from switching from transition-state control in thermal heterolysis reactions to conical intersection control for photochemical heterolysis reactions. The elevated ground-state surfaces resulting from generating unstabilized or destabilized cations, in conjunction with stabilized excited-state surfaces, can lead to productive conical intersections along the heterolysis reaction coordinate.
منابع مشابه
Isomerization around a C=N double bond and a C=C double bond with a nitrogen atom attached: thermal and photochemical routes.
The Longuet-Higgins phase change theorem is used to show that, in certain photochemical reactions, a single product is formed via a conical intersection. The cis-trans isomerization around the double bond in the formaldiminium cation and vinylamine are shown to be possible examples. This situation is expected to hold when the reactant can be converted to the product via two distinct elementary ...
متن کاملConical intersections in molecular photochemistry ± the role of phase change
Conical intersections are now known to be involved in a large variety of photochemical transformations. In this paper, we present a simple method for determining the existence of a conical intersection for a given chemical reaction. The method, based on the phase change theorem, is easy to apply, does not require quantum chemical calculations, and uses ground state surface properties only. The ...
متن کاملIntermediate photofragment distributions as probes of non-adiabatic dynamics at conical intersections: application to the Hartley band of ozone.
Quantum dynamics at a reactive two-state conical intersection lying outside the Franck-Condon zone is studied for a prototypical reaction of ultraviolet photodissociation of ozone in the Hartley band. The focus is on the vibrational distributions in the two electronic states at intermediate interfragment distances near the intersection. Such intermediate distributions of strongly interacting ph...
متن کاملPhotochemical formation of intricarene.
Sunlight is the ultimate driver of biosynthesis but photochemical steps late in biosynthetic pathways are very rare. They appear to play a role in the formation of certain furanocembranoids isolated from Caribbean corals. One of these compounds, intricarene, has been suspected to arise from an intramolecular 1,3-dipolar cycloaddition involving an oxidopyrylium. Here we show, by a combination of...
متن کاملPhotochemical isomerization reactions of cyanopyrroles: a theoretical study.
The mechanisms of the photochemical isomerization reactions were investigated theoretically using a model system of 2-cyanopyrrole and 2-cyano-5-methylpyrrole with the CASSCF (eight-electron/seven-orbital active space) and MP2-CAS methods and the 6-311(d,p) basis set. The structures of the conical intersections, which play a decisive role in such phototranspositions, were obtained. The intermed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 136 25 شماره
صفحات -
تاریخ انتشار 2014